
Journa] of Mathematical Chemistry 4(1990)89-102 89 

RECENT DEVELOPMENTS IN TREE-PRUNING METHODS 
AND POLYNOMIALS FOR CACTUS GRAPHS AND TREES 

K. BALASUBRAMANIAN* 
Department of Chemistry, Arizona State University, Tempe, AZ 85287-1604, USA 

Abstract 

The object of this paper is to review the recent developments in tree-pruning methods and 
characteristic and rnatching polynomials of spirographs, cacti and trees. The applications 
of the pruning method to spirographs, Bethe lattices, cactus lattices and Bethe cactus 
lattices are considered. In each case, the tree-pruning method yields analytical solutions for 
these graphs. 

1. Introduction 

Computations of the characteristic and matching polynomials of graphs have 
been the topic of numerous investigations in recent years [ 1-40]. A more complete list 
of references on characteristic polynomials of graphs can be found in a recent review 
article by Trinajsti6 [50]. The characteristic and matching polynomials of graphs have 
many physicochemical applications to a variety of areas ranging from fluid dynamics, 
quantum chemistry, spectroscopy, chemical kinetics and oscillatory reactions to 
statistical mechanics. 

The evaluation of the characteristic and matching polynomials of graphs was for 
many years generally regarded as a tedious problem. With the advent of powerful 
algorithms and computers, it has now become possible to obtain these polynomials for 
graphs which contain up to 200 vertices. The evaluation of matching polynomials of 
large graphs containing many fused rings and three-dimensional structures süll remains 
an unsolved problem. 

A computer code in Pascal was developed by Ramaraj and the present author [30] 
to obtain the matching polynomials of graphs and lattices containing a large number of 
vertices. Although this code can be used to generate the matching polynomials of many 
graphs, application of this code to real lattices could consume large amounts of com- 
putational time due to the possibility of combinatorial explosion. 

A fascinating and unsolved problem in statistical physics is the problem of dimer 
statistics for three-dimensional lattices. The problem is to find the number of ways of 
placing k dimers (dumbbells) on a lattice containing N points such that any two dimers 
are placed in a disjoint manner (i.e. two dimers do not have a common vertex in the 
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lattice). This problem has many important applications in physics and chemistry. The 
grand canonical parfiüon function of a lattice gas, the parfiüon funcüon of a system of 
interacting ferromagnets (the Ising problem), the kineücs and thermodynamics of 
adsorption of diatomics on surfaces, the enumerafion of chemical resonance stmctures, 
and the stabiliües of ionic crystals can all be shown to be related to the dimer 
statistics [42-48]. 

An analytical solution for the complete covering of dimers has been obtained by 
Temperley and Fisher [53] and Kasteleyn [54] for square lattices. A generating funcüon 
for the number of ways of placing k dimers on a lattice of N points was called "matching 
polynomials" by FareU [55] and Gutman [60], and "z-counting polynomials" by 
Hosoya [ 18]. These polynomials have not been obtained even for all two-dimensional 
lattices. The number of perfect matchings, however, can be obtained using the Pffafian 
expansion of the associated directed lattice [42] or by the transfer matrix approach of 
Onsager [43]. 

Latüces and graphs with certain special characteristics are candidates for exact 
analytical soluüons. The author [8] showed in 1982 that a powerful method, which he 
caUed the tree-pruning method, could be used to generate the characteristic polynomials 
of tree graphs (connected graphs containing no cycles). This was further expounded by 
the author and Randi6 [9] for non-tree graphs containing pending bonds. The author and 
Randi6 [10] also showed the use of this method for weighted graphs and trees. 

The present author [38] more recently applied the tree-pruning method to the 
exact lattice statistics of Bethe lattices of any valence and size, including weighted 
Bethe lattices. Fisher and Essam [46] showed the use of Bethe lattices for percolation 
and cluster size problems. Although Bethe lattices are not true lattices, since they are 
mathematical abstractions of true lattices, they serve as useful candidates for exact 
solutions to many statisücal problems. Cayley trees, which are used routinely in many 
statistical applications, are special cases of Bethe lattices. 

In ref. [51 ], the author showed that the tree-pruning method could also be applied 
to graphs which he called "spirographs". This term was coined from the name spiro- 
cycle, used in organic chemistry for compounds which contain two cycles which share 
at most one common vertex. The characteristic polynomials of spirographs were shown 
to be easily derivable using the pruning method. 

Hosoya and the author [52] combined the pmning method and the operator 
technique to obtain the exact lattice staüsücs and characteristic polynomials of cacti 
lattices of any length containing rings of any size. Powerful recursive relaüons were 
derived using these methods. 

As se, en from the above survey, there have been many important developments 
in the area of pruning techniques and graphical polynomials. The objective of this article 
is to summarize these developments. Section 2 describes the pruning method. Section 
3 consists of applications of the pruning method to Bethe latüces. Section 4 comprises 
the applicaüons of the pruning method to spirographs, while secüon 5 briefly discusses 
applications to some cacti lattices. 
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2. Pruning method 

2.1. DEFINITIONS AND PRELIMINARIES 

The adjacency matrix of a graph is defmed as follows: 

{ 1 if the vertices i and j are connected, 

Aij = 0 otherwise. 
(1) 

The secular detenninant of  the adjacency matrix of a graph is caUed the characteristic 
polynomial of  the graph. A tree is a connected graph containing no cycles. The non- 
terminal venices of a tree (with degree more than 1) can be defined as the roots of  the 
tree. Any tree can be expressed as a product of  a quoüent tree Q formed by a selected 
set of  roots and the branches resulting from pruning the tree at these selected roots. For 
example, let us consider the tree in fig. 1. When this tree is pruned, fragments of certain 
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Fig. 1. An NMR tree containing 22 vertices. 
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Fig. 2. The quoUent tree Ql and the fragment types Tlt, 
T21 and T3t generated by pruning the tree of fig. 1. 
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kinds recur. A collection of such fragments is shown in fig. 2, with the black dots 
idenüfying the roots. Let such a branch be denoted ~ ,  where j stands for the pruning 
step. Let the characteristic polynomial of  branch T.. be H... It can be seen that/-/~. = h« 

• q q . . . ~, 
= x « - (k - 1)x k-  2 if T.. contains k vert~ces. Let the charactenstlc polynomlat of  q 
fragments obtained by deleting the root in T.. be denoted H:. ' ,! = h«. It can be easily seen 

ù J x k- ~ The tree in fig. 1 can be pruned that the characteristic polynomial of h k = . 
at the verüces 2, 11, 12, 15, 5 and 18, resulting in the tree Q~ shown in fig. 2 and the 
fragments T1~, T21, and T3~. If we group all the pruning vertices of the same degree in 
the unpruned tree in fig. 1 into the same sets, we obtain 

I:1 = {11, 12, 15, 18}, Yz = {2, 5},  }'3 = {3, 4}.  (2) 

The tree in fig, 1 can be obtained by attaching each root in the set Y1 to the root of  a 
copy of the type T.I. Such a product was formulated by the author [41], which was called 
the rom-to-mm product and can be denoted as Q.(Tll, T21 . . . .  ). 

The tree-pruning technique provides an elegant solution for the evaluation of 
characterisüc polynomials of  trees by contracting the secular determinant of  the un- 
pruned tree in terms of the secular determinants of the pruned tree and the branches. Let 
Q1 be the quotient tree obtained in the first step of pruning and let T~~, T2~ . . . .  be the 
fragment types. Let qij be the adjacency matrix of the pruned tree (quotient tree). Define 
a contracted adjacency matrix of order m × m if m is the number of vertices in Q by the 
following recipe: 

f -H~i (x )  i f i = j  and i ~ Yk, 
+qi jH'u(x)  i f i ; ~ j  and i ~ Y«. 

(3) 

It was shown that the characteristic polynomial of the unpruned tree is the determinant 
of  the contracted adjacency matrix. 

Let us illustrate this procedure with the tree shown in tig, 1. This tree can be 
pruned iteratively to a quotient tree containing just two vertices in two successive 

I 2 

Qz Tl2 

Fig. 3. The quotient tree Q2 and the fragment 
type T12 obtained by pruning Qa in fig. 1. 

iterations. The quotient tree and the types generated in the first and second iterations are 
shown in figs. 2 and 3, respectively. The matrices D (0) and H.js are given by (4)-(6): 
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Hll  = h3, H'II = h~, H21= h4, H[l = h'4, H31= hl,  H ~ I = I ,  (4) 

[ , ,! ,  o o - h ' ù  l 
Dù2)__ h3 o -h~] (5) 

0 h 3 -h~/' 
/ 

- 1  - 1  hl J 

[~~o o 1 
D,(12)  _. h3 0 , (6) 

0 h3 

H12 = h2 h4hl -2h3hä  h 4 - h 2  h'4, Hi2 = h2 h4, (7) 

A (2) = F H I 2  -ni~ l (s) 
L-n~2 u12 J" 

,2 det(A <2)) = H22 - H12, which can be easily seen to be 

xlO(x 6 _ lOx 4 + 30x 2 _ 28) 2 - xS(x 6 _ 7x 4 + 16x 2 - 12) 2. (9) 

The advantage of the above pruning method is that it recursively reduces the tree 
we started with into finally a tiny tree containing just two vertices. Since analytical 
expressions are known for the characteristic polynomials of branches, the problem of 
generating the characteristic polynomial of the tree in fig. 1 was reduced to just a 2 x 2 
matrix, which can be evaluated trivially. 

In the subsequent sections, we demonstrate the applications of  the pnming 
method to generate polynomials of lattices and cacti. 

3. Generating functions for Bethe lattices 

A Bethe lattice of valence tr and length n is defined as a tree in which every non- 
terminal vertex has er neighbors and there are n bonds from the central vertex to any 
terminal vertex. Figure 4 illustrates a Bethe latüce of valence 4 and n = 3. Let Qi be the 
quotient tree generated in the ith step of pruning and T/be the corresponding fragrnent 
type. Let H i be the characteristic polynomial of type T/and H~ be the polynomial 
obtained after deleting the root (branch point) in T/; H i and H~ can be obtained recur- 
sively. At the nth step of  pruning (where n is the length of the lattice), one obtains a 
simple tree whose polynomial can be obtained easily, and thus the polynomial of the 
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D 

Fig. 4. A Bethe lattice with valence 4 and n = 3. 

original lattice we started with can be constructed recursively. For a lattice of  valence 
trat the first iteration, type 7"1 would contain one branch point and ( t y -  1) open vertices. 
Thus, the characterisüc polynomial of  T~, H~, is 

= ~ a _  ( ( y _  1 ) ; L a - 2  H 1 = h a 

H1 = )la- 1 (10) 

At the second iteration, H 2 and H 2 am expressed in terms of  H 1 and H1 as 

p O ' - 2  
H 2 = ~,H~ - I  - ( o ' -  I ) H I H  I , 

H 2  = Hla-  1 (11) 

? ? 

Similafly, H 3 and H 3 are expressed in terms of  H 2 and H 2 as 

• 0 - - 2  H 3 = ~.H2-  1 - ( e r -  1)H2H 2 , 

? - -  • 

H3 = H 2  1 (12) 

Consequently, for any Bethe lattice, the expressions at the ith iteration are related to the 
ones at the (i - 1)th iteration as 

n j =  ;~HT_- ~ ' - ( ( z -  1)H'i_ ,HT_-~ 2, 

H:= H0--1 , , _  ~ • ( 1 3 )  
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Finally, at the (n - 1)th iteration, the characteristic po lynomia l /4_  1 is 

= ,%H a- I _ (fr- I)H" H ~- 2 H - 1  ù - 2  - 2  ù ' - 2 '  

H" = H t;-1 
n - 1  ù - 2 "  

The contracted adjacency matrix of Qù expressed in terms o f / 4 _  1 is given by 

(14) 

t 
i-Iù_1 

A 
= ' ( n -  1) Aij - H ù _  1 qij 

_a! . , -  1) 
- q  

i f i = j  and i e  Yù-I ,  

i f i = j  and i ~  Y ù - I ,  

i f i ~ j  and i e  Y ù - I ,  

i f i ~ j  and i ~  Y ù - I ,  

(15) 

where q.!"- 1) is the adjacency matrix of Q . and Y is the set of  roots (branch points) 
• q ù - - 1  tl 
in (2ù- 1 (there are o ' -  1 vertices in Y _ 1)" If the open vertex of Qù _ 1 carries the label 
1, ~then the matrix A takes the form 

A = 

A -I -I ... -I 

-H'n- i Hù- I 0 .,. 0 

-/-/~, ... -1 0 Hù-  1 0 

0 Hù-  1 ... 0 

-H~,_I 0 ... 0 ... 0 ... Hù_I 

(16) 

The determinant of  A can be easily seen to be 

/-/n = AHnSt - o H '  H a- I n - 1  n - I  " 
(17) 

The above expression is simply the characterisäc polynomial of  the Bethe lattice one 
starts with. 

The above method was used to obtain the characteristic polynomials of  many 
Bethe lattices, including the weighted lattices in refs. [38]. Table 1 shows the charac- 
teristic (matching) polynomials of  Bethe lattices with n = 3. 



96 K. Balasubramanian, Recent developments in tree-pruning methods 

Tab le  1 

T h e  character is t ic  po l ynomi a l s  o f  Be the  latt ices wi th  n = 3* 

cr Character is t ic  po lynomia l  

~7 _ 6~5 + 1023 _ 4 ~  

B 2 2  _ 21,:4.2o + 180Bis  _ 816~)6  + 2112;i)4 

_ 3 1 2 0 ~  12 + 2432~]  ° - 768~. 8 

Ä.53 _ 52;1.51 + 1224~49 _ 17,280B47 

+ 163,350B 45 - 1,092,528~. «3 + 5,321,700~.  «1 

- 19,123,128 ~ 39 + 50 ,709 ,969~?  7 

- 98 ,021 ,340B 35 + 134 ,238 ,060B 33 

- 123,294,312/~ 3~ + 68,024,448~.  29 

- 17,006,112)1. 27 

* o" = 4 wi th  n = 3 is s h o w n  in fig. 4. 

4. Characteristic polynomials of spirographs 

A spirograph can be obtained from simple ring graphs by "joining" a single vertex 
of one ring to a single vertex of another ring so that the two vertices are fused to become 
a single vertex in the final coalesced graph. 

The resulting single vertex may be called a spiro vertex. Figure 5 shows a 
spirograph containing four-membered rings. The characteristic polynomials of spiro- 
graphs can be obtained by pruning the spirograph at the spiral points, as shown by the 
author in ref. [51 ]. 

Fig. 5. A sp i rograph  cons i s t ing  

o f  two 4-memberec l  r ings .  

The pmning method could be generaüzed to any spirograph containing n rings. 
For a linear spimgraph which contains n square rings, we obtain the following recursive 
relaUons by applying the pruning method. Let h denote the polynomial of such a 
spimgraph containing n rings. The following relations can be derived: 



K. Balasubramanian, Recent developments in tree-pruning methods 97 

Tab le  2 

Charac ter i s t ic  po l ynomi a l s  o f  l inear  sp i rographs  con ta in ing  h e x a g o n s  

n Character is t ic  po lynomia l  

B ö _  6 2 4  + 9 Z 2 _  4 

Bll  _ 12)~9 + 5 0 B  - 9 2 Z  5 + 77~t 3 -- 2 4 ~  

~,16 _ 18Ä)4 + 127212 _ 456~)o  + 911~s  _ 1034~6 + 641~4 _ 188~2 + 16 

B21 _ 24~19 + 240;i.17 _ 1312Ä,15 + 4338,~}3 _ 9080~dl  + 12,216;i,9 

- 10 ,448Z 7 + 5429~?  - 153623 + 176;I, 

226 _ 30224 + 389;I. 22 - 2876~, 2° + 13,490~. 18 - 42,324)~ 16 + 9 1 , 2 9 8 2  TM 

_ 136,944212 + 142,445,~ 1° _ 100 ,830B s + 46,553;I. 6 - 12,86824 + 1 7 6 0 ~  2 

- 6 4  

B31 _ 36~29 + 574~,27 _ 5364~25 + 32,795 223 _ 138,800;121 + 419,956219 

-925 ,160~ .17  + 1,496,871& 15 - 1,779,076&13 + 1,539,598~} 1 - 950,500)t.  9 

+ 403,101~.  7 - 109,672& 5 + 16 ,736; t  3 - 1024~. 

236 _ 42234 + 795& 32 _ 899223°  + 67 ,977 ; t  2s _ 3 6 4 , 1 9 0 2  z6 

+ 1,431,467~, 24 - 4 ,217,420Bz2 + 9 ,436,331& 2° - 16,143,846,~ is  

+ 21,145,865Ä, 16 - 2 1 , 1 1 3 , 9 9 2 ~  la + 15,894,747,q} / - 8 ,843 ,410B 1° 

+ 3,517,489~.  s - 945,996)~ 6 + 155 ,632~  4 - 12,672; t  z + 256 

B41 _ 48~79 + 1052~77 _ 13,976~35 + 126,056/3.33 _ 819,600;i.31 

+ 3 , 9 8 2 , 6 8 4 ~  29 - 14,803,560;I. 27 + 42 ,737 ,202  ~1. 25 - 96 ,770 ,336  ~23 

+ 172,806,084~,  zl - 243,777,000/] .  ~9 + 2 7 1 , 0 0 9 , 9 3 6 ~  17 - 2 3 6 , 1 6 0 , 3 3 6 ~  15 

+ 159,286,772213 - 81 ,642 .776~  1~ + 30,884,5497~ 9 - 8,233,168;17 

+ 1 ,431,120~? - 140,032& 3 + 5376;I. 

hn = Ä 2 h n - i  - 4 ~ , 2 h ; , - 1 ,  

hn -  1 = ~2hn - 2  - 4Ä,2hn - 2 ,  

h 2  = 2 2 h l  - 4 & 2 h ~ ,  

h l  = ) ] 4  _ 4 ) ] , 2 ,  

h~  = ~ 3  _ 3ù1 ,  

( 1 8 )  
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Thus, closed analytical solutions exist for the characterisüc polynomials of linear 
spirographs containing n square rings. Similar recursive relationships can also be 
derived for many branched and other spirographs. Table 2 shows the characterisüc 
polynomials of spirographs containing hexagons. 

5. Characteristic polynomials of cacti iattices 

A cactus is thus a special case of a spirograph. One could also form a Bethe 
cactus. The pruning method was applied to a variety of cacti. 

As noted in the introduction, Hosoya and the present author [52] have recently 
applied a combinaüon of operator and pnming methods to the characterisüc and 
matching polynomials of cactus lattices. We illustrate this application of the pruning 

n Cn Dn E n 

2 

3 

Fig. 6. A Bethe cactus lattice graph. 

method with a few lattices. The recursive relation for the characterisüc polynomials of 
a square Bethe cactus (see fig. 6) is given by 

cù+1 = 02(02-  4e2), 

On+ 1 = On {x(D~ - 2En) - 2OrtEn }, (19) 

En+l = Dn(D2n - 2 E ~ ) ,  
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M a t c h i n g  p o l y n o m i a l s  o f  B e t h e  c a c t u s  l a t t i c e s  ( s e e  f ig .  6)  

C 1 x 4 - 4 x  a + 2 

D 1 x a - 4 x 2  + 2 

E 1 x 3 - 3 x  

C 2 x lõ - 2 0 x  14 + 1 5 4 x  lz  - 5 9 2 x  1° + 1 2 2 4 x  s - 1 3 6 0 x  6 + 7 6 8 x  4 - 1 9 2 x  2 + 16 

E 2 x 12 - 1 4 x  l °  + 7 0 x  s - 1 5 6 x  6 + 156x  4 - 6 4 x  2 + 8 

B 2  _ 68x-SO 

2 . 1 4 6 x  4s - 4 1 , 8 0 8 x  46 

5 6 4 , 1 7 6 x  ' ~  - 5 , 6 0 8 , 9 4 4 x  42 

4 2 , 6 6 0 , 1 1 2 x  4° - 2 5 4 , 4 2 8 , 3 5 2 x  aa 

1 , 2 1 0 , 0 3 8 , 9 4 4 x  36 - 4 , 6 4 2 , 0 6 8 , 7 3 6 x  34 

1 4 , 4 7 5 , 5 2 7 , 1 3 6 x  32 - 3 6 , 8 6 5 , 9 9 2 , 4 4 8 x  3° 

C a 7 6 , 8 5 9 , 9 3 5 , 3 6 0 x  2s - 1 3 1 , 2 0 7 , 6 9 9 , 7 1 2 x  26 

1 8 3 , 0 8 8 , 0 9 5 , 7 4 4 x  24 - 2 0 8 , 0 7 5 , 9 5 0 , 0 8 0 B  2 

1 9 1 , 5 0 7 , 5 8 4 , 2 5 6 x  2° - 1 4 1 , 6 1 8 , 2 1 2 , 8 6 4 x  18 

8 3 , 2 6 2 , 4 2 4 , 5 7 6 x  16 - 3 8 , 3 8 8 , 7 4 8 , 2 8 8 x  a4 

1 3 , 6 3 3 , 1 3 6 , 6 4 0 x  12 - 3 . 6 4 1 , 8 2 7 , 3 2 8 x  1° 

7 0 8 , 3 9 9 , 1 0 4 x  8 - 9 5 , 7 3 1 , 7 1 2 x  6 

8 , 3 4 3 , 5 5 2 x  4 - 4 0 9 , 6 0 0 x  a 

8 , 1 9 2  

x4O _ 52x 3s 

1,226x 36 - 17,400x 34 

166,448x 32 - 1,138,680x 3° 

5,768,104x 2s - 22,101,424x 26 

D 3 64,876,080x 24 - 146,857,536x 22 

2 5 6 , 8 2 1 , 3 6 7 x  2° - 3 4 6 , 1 2 4 , 8 6 4 x  la 

3 5 7 , 1 6 4 , 4 1 6 x  16 - 2 7 9 , 1 2 8 , 3 2 0 x  14 

1 6 2 , 5 8 4 , 9 6 0 x  12 - 6 9 , 0 0 8 , 3 8 4 x  m 

2 0 , 6 7 8 , 4 0 0 x  s - 4 , 1 7 7 , 9 2 0 x  6 

5 2 9 , 4 0 8 x  4 - 3 6 , 8 6 4 x  2 

1,024 
x39 _ 5 0 x  37 

1 , 1 3 2 x  35 - 1 5 , 4 0 0 x  33 

1 4 0 , 8 9 2 x  31 - 9 1 9 , 2 7 2 x  29 

4 , 4 2 6 , 4 8 8 x  27 - 1 6 , 0 5 8 , 0 3 2 x  2s 

4 4 , 4 1 4 , 3 2 0 x  23 - 9 4 , 1 8 9 , 4 4 0 x  21 

E 3 1 5 3 , 2 3 9 , 9 3 6 x  19 - 1 9 0 , 4 8 8 , 3 8 4 x  17 

1 7 9 , 3 4 3 , 3 6 0 x  15 - 1 2 6 , 0 9 5 , 7 4 4 x  13 

6 4 , 8 4 9 , 7 9 2 x  11 _ 2 3 , 6 8 0 , 2 5 6 x  9 

5 , 8 7 9 , 0 4 0 x  7 - 9 2 7 , 7 4 4 x  5 

8 2 , 4 3 2 x  a - 3 , 0 7 2 x  

N u m b e r  o f  v e r t i c e s  N C : 2 (3  n -  1) 
/ t  

Dn: ( 3 " *  1) _ 1 ) /2  

E : 3 ( 3 " -  1 ) /2  
Æ 
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where the symbols C ,  D ,  etc. are illustrated in fig. 6. For a triangular cactus, we obtain 

Cn + l = D2 - 3Eff  Où - 2 E  3 ,  

D t+  1 = x ( D  2 - E 2 )  - 2En (On + En ), (20) 

F~+, = o ù ~ -  eù ~ 

Similar recursive relations could be obtained for any Bethe cactus. By a combination 
of pruning method and operator technique, Hosoya and the author [52] have obtained 
the characteristic polynomials and matching polynomials of cactus latüces. An example 
of a cactus is shown in fig. 6. 

As an example, let us illustrate the application of the pruning method to the 
characteristic polynomial of the Bethe cactus in fig. 6. The matching polynomials of 
cacti can also be obtained by edge-weighting the latfice, as shown in fig. 7. The 

( 

Fig. 7. A directed cactus graph. The 
characteristic polynomial of this graph is 
the matching polynomial of the original 
undirected graph. 

characteristic polynomial of the directed lattice in fig. 7 is the matching polynomial if 
one ässigns a weight i in the direcüon of the arrow and - i  in the opposite direction. The 
matching polynomials of Bethe lattices are shown in table 3. For the matching poly- 
nomials of other graphs, see [59]. 

6. Conclusion 

Ita this paper, we reviewed the recent developments in tree-pnming and operator 
methods to the exact computations of characteristic and matching polynomials of tree 
graphs, spirographs, cactus graphs and Bethe lattices. We showed that powerful 
recursive relations and exact analytical expressions can be obtained through the use of 
operator and pruning techniques. 
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